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Abstract

When pilots are flying at low altitudes, they need a sensor that can help
them detect and avoid wires; this need remains a high priority for all U.S.
military services. Many different sensors have been considered to fulfill
this need. This report presents data that were collected on powerline
wires of various diameters with the use of a 94-GHz radiometer. These
measurements were conducted at short range in an effort to quantify the
wire signatures and to determine if a millimeter-wave radiometer could
be used to help pilots avoid wires. Data are presented for seven sizes of
wire as well as for the horizon background of each wire. The results show
that wires down to 1/4 in. in diameter can probably be detected reliably
at ranges up to 200 m with a 94-GHz radiometer that uses a 3-ft
antenna, provided that the signature of the horizon background can be
characterized during flight. Beyond 200 m, the results show that an
image-enhancement algorithm, if proven to be adequate, or a larger
antenna will probably be necessary to reliably detect most standard
powerline wires.
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1. Introduction

The U.S. military is greatly interested in finding a sensor that can help pi-
lots detect and avoid wires when flying at low altitudes. The U.S. Army is
particularly interested in preventing wire collisions with its helicopters,
which often fly at an altitude of 200 ft or less during missions. The required
sensor should operate effectively in the daytime, nighttime, and under
reduced-visibility conditions. The type of sensor that ultimately will be used
to fill this need is currently undetermined. Millimeter-wave (MMW) radar,
ladar, and passive MMW imagers are all being considered [1-4]. We made
the measurements presented in this report to assess the potential of an MMW
radiometer to detect powerline wires by empirically determining the limits
of the technology. From this information, we can weigh the benefits of radi-
ometry against its limitations in a meaningful way.

An ARL 94-GHz radiometer was used to measure the signature of a variety

of wire types and sizes at short range. In this report, we present these re-
sults and extrapolate them with range and antenna size to show results for
many cases of interest. In addition, we have made theoretical calculations
of the passive MMW signature of a bare metal cylinder for comparison.



2. Experiment Description

The experiment reported here measured the 94-GHz radiometric signature
of a variety of powerline wires of known size at a known range. We accom-
plished this with the use of the Army Research Laboratory's 94-GHz Dicke-
switched radiometer [5]. This instrument is used to measure the low-level,
thermal MMW radiation emitted and reflected naturally by its environment.
The voltage data collected are converted to a noise-equivalent temperature
or brightness temperature by calibration software. Figure I shows a circuit
diagram of the radiometer. The radiometer's noise figure of about 8 dB,
instantaneous bandwidth of 6 GHz, and typical signal-integration time of
30 ms result in a system sensitivity of 0.2 K. For this experiment, the radi-
ometer received vertically polarized radiation and was fitted with a
3-in.-diam horn-fed lens antenna that results in a 3-dB beamwidth of 2.750.
The switch in front of the mixer (as shown in the figure) is a ferrite device
that operates over the bandwidth 91 to 97 GHz with a loss of 0.6 dB. It was
switched at a rate of about 1 kHz during data collection to remove offset
drift in the receiver circuit. The radiometer was calibrated before each meas-
urement with the use of liquid-nitrogen-soaked radar-absorbing material.
The radiometer is housed in a temperature-controlled box that is heated to
95 'F to minimize gain drifts between calibrations. This results in an abso-
lute accuracy of about ±1 K for the system.

Wires of various diameters and materials were collected, and the signature
of each one was carefully measured with the radiometer at short range so
that the results could be extrapolated to longer range. Table 1 shows the
wires that were measured. Each wire was about 2 m in length and was
mounted in a fixture that held it horizontally in front of the radiometer at a
range of about 4 m (fig. 2). This meant that the radiometer 3-dB far-field
beam spot on each wire was approximately 6.2 in. (15.7 cm). In addition,
each piece of wire was rotated relative to the radiometer such that the angle
between the axis of the wire and the radiometer line of sight was about 45'.

Figure 1. Block 3-in.
diagram of ARL antenna Switch

94-GHz radiometer. ----- M-i-x->(ý" > (x-

(91-97GHz) 83 GHz 24 dB 37 dB
D I 1.1 dB (6-12 GHz)

Positioner Load FLO]
Switch 85 GHz

control 37 dB

A/D card 650 kHz

IEEE-488 PC
Detector
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Table 1. Physical Period of
characteristics of all Wire diameter Strand diameter spiral
wires measured (in.) (in.) (in.) Description
during experiment. 1/4 1/16 3 3/8 Steel

5/16 1/8 4 15/16 1 center steel wire
7 Al outer wires

1/2 5/32 6 Al
11/16 1/8 8 15/16 1 copper center wire

18 Al outer wires
13/16 3/32 97/8 37-strand Al
15/16 1/16 N/A 5/32 cross-linked

polystyrene outer layer
17/16 1/8 11 1/2 37-strand Al wire

Figure 2. Measurement
scene from point of
view of radiometer.
Shown is 15/16-in.-
diam wire mounted in
fixture.

This was done to minimize the reflections off the wire emitted by the build-
ing behind the radiometer; these reflections would have increased the meas-
ured brightness temperature of the wire. The 15/16-in. wire was clad in
polystyrene (as indicated in the table). All other wires were bare metal.

We collected data on each wire by raster scanning the scene and forming an
image of the wire and its background. The data were collected in half-
beamwidth steps across the scene. A raster-scanned image of just the back-
ground with the wire removed was taken after each wire measurement to
allow a comparison of the two images and to create background statistics.
In addition, the zenith sky brightness temperature was measured after each
wire measurement so that its effect on the scene could be quantified.
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3. Measurement Results/Discussion

As stated in the previous section, we collected the data of each wire by
raster scanning the radiometer's antenna beam over the scene. Figure 3
shows an example of such an image. The data were processed by extracting
the portion of each image between the vertical wooden beams that sup-
ported the wire. This was done so that the beams did not enter into the data
statistics. From this portion of the image, we averaged each horizontal line
of data to a single value. This process results in a one-dimensional array
that corresponds to an averaged vertical brightness-temperature profile of
the image. We performed the process on each wire image and also for each
background image taken without the wire present. Given a vertical profile
for both the wire and its background, one can make a subtraction and plot
the difference. Figures 4 and 5 show examples of data for two different wires
that have been processed in this manner.

Figure 3. Image of 111
11 /16-in.-diam wire
taken with AL
94-GHz radiometer at
a range of 4 m. Dark
vertical structures are
due to vertical wooden • s

pieces of fixture. Wire
can be seen as a thin
white line across
middle of scene.

Figure 4. Left graph 270 12

shows vertical profile ~.265 ~ -. 10

of brightness P 6

temperature for both ~ ~6
a 255 /

11 /16-in, wire and P 4
-250 :background versus2

zenith angle. Right 245 M~ *

graph shows 240 -- Wr
m - Background -2

difference between 235 -
two plots. 84 86 88 90 92 94 96 98 84 86 88 90 92 94 96 98

Zenith angle (0) Zenith angle (0)

Figure 5. Left graph __265 10

shows vertical profile 260~ 8

of brightness 21) 6

temperature for both -25.
CL250 * 2

1/2-in. wire and E C: 0
background versus 2 45- -2

zenith angle. Right -F4 .- Wr
graph shows .2) 235 -Background m-6
difference between m230 -80

two plots. 84 86 88 90 92 94 96 98 84 86 88 90 92 94 96 98
Zenith angle ()Zenith angle (0)
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The left-hand graph of each figure shows the vertical profile of the bright-
ness temperature of each scene versus the angle from zenith. These graphs
have two plots; one is the profile with the wire present and the other is the
profile without the wire. The wire was located at a zenith angle around 880
and is seen in the figures to have a lower brightness temperature than the
background. This is more apparent in the difference graph on the right-
hand side of each figure. The background plots show that as the zenith
angle increases above 930 (30 below the horizon), the standard deviations
become larger. This is mostly because the radiometer is pointed at asphalt
at these angles. A relatively large variability in brightness temperature that
is often seen in asphalt is due to changes in solar loading and wind speed.
On days that the data were taken, it was variably cloudy and cold; there-
fore, the physical temperature of the asphalt was not stable. Table 2 pre-
sents a summary of all wire data as well as sky-temperature data. The wire
data shown are the maximum value of the difference between the back-
ground and the wire. The last two columns of the table show calculated
model results that will be described later.

The differences seen in the table from wire to wire are due to a combination
of a changing fill factor (the fractional area of the 3-dB spot occupied by the
wire), variations in the background, and a changing sky temperature. The
changing fill factor is obviously due to the varying wire size. The changing
background brightness temperature is due mostly to variations in its physi-
cal temperature. Despite all these variables, one can see some trends in the
data. The 1/2- and 11 /16-in, wires show more contrast than the smaller
wires, as expected, but the 13/16-, 15/16-, and 17/16-in, wires do not. The
smaller than expected contrast for the 15/16-in, wire is likely due to attenu-
ation caused by the outer polystyrene insulation around the cable. Addi-
tionally, it is likely that the 13/16- and 17/16-in, cables have a smaller than
expected contrast because of an increased sky temperature. What is more
significant, though, is that the contrast magnitudes are fairly small overall,
especially when compared to the amount by which the background changes
versus angle. If one studies all the background profiles taken during the
test (fig. 6), one can clearly see that the variation is quite large compared to
the signature of the wires. What is important to note, though, is that the
shape of the curves is very similar near the horizon. (The shape below the
horizon varies more as was discussed earlier.) Therefore, to detect wires, it
may be necessary to collect a running brightness temperature template of
the horizon during flight and look for changes in its shape to pull the small
wire signal out from the horizon clutter.
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Table 2. Summary of all data collected and results of cylinder calculation.

Measured Calculated
brightness brightness

Background temperature temperature
Zenith sky brightness (background- Weighted sky (background-

Wire diameter temperature temperature wire) temperature cylinder)
inches (in) (K) (K) (K) (K) (K)

1/4 (0.00635) 48 262 4.3 ill 3.0
5/16 (0.00793) 33 262 4.5 100 4.0
1/2 (0.01270) 56 260 7.0 115 5.7
11/16 (0.01746) 42 266 7.5 108 8.6
13/16 (0.02064) 79 265 6.4 133 8.5
15/16 (0.02381) 39 264 5.5 105
17/16 (0.02699) 89 257 4.3 138 10.0

Figure 6. Brightness 270-

temperature of 25
background scene
versus zenith angle for 260
various background
data runs. ~ -255 ý --

2 250

24 v Data run 1
,3) 245- arun

o Data run 3
240- 0 Data run 4

23-v Data run 5
235 Data run 6

*Data run 7
230

84 86 88 90 92 94 96 98

Zenith angle(0
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4. Comparison With a Cylinder Model

A simple model can be used to estimate the expected brightness tempera-
ture of metal cylinders of sizes that match those of the measured wires.
Imagine a perfectly reflecting metal cylinder that is much longer than the
radiometer's antenna beam spot is wide and that runs across the middle of
the beam spot. If the diameter of the circular beam spot is much larger than
the diameter of the cylinder, then the shape of the wire can be considered
rectangular and the fraction of the spot filled by the cylinder (fill factor) can
be expressed as a ratio of the areas

ORd 4df =-,- 2 = r- R (1)

In this expressionf is the fill factor, d is the diameter of the cylinder, 0 is the
radiometer 3-dB beamwidth in radians, and R is the range from the radi-
ometer to the cylinder. If the radiometer is about the same height above the
ground as the cylinder, then the top half of the cylinder will reflect MMW
energy from the sky and the bottom half will reflect MMW energy from the
ground (assuming other objects are not nearby, e.g., trees, buildings). There-
fore, the contrast between a pixel that contains the cylinder and a pixel with-
out the cylinder can be expressed

AT b - (L*s+(1Lý)bD (2)

where b is the background-brightness temperature without a wire present
and s is the sky temperature. The fill factor, f, has been divided by two be-
cause only half the cylinder reflects energy from the sky. The sky-
brightness temperature increases as a cosine function from the zenith-
brightness temperature to the horizon-brightness temperature. Therefore,
the s used in this equation is a cosine-weighted average of those two values,
since the cylinder reflects all sky angles toward the radiometer. Table 2 shows
these values. Inserting equation (1) into equation (2) gives

AT = (b - s) 2d (3)

Equation (3) shows the expected 1/R dependence of the contrast and a lin-
ear dependence on wire diameter that is valid for d << OR. Note that signal
path attenuation has been ignored, since it is negligible at the ranges
involved.

Table 2 shows the calculated ATs for the cylinders along with the measured
data for the same-sized wire. We made each calculation for a particular cyl-
inder size, sky-brightness temperature, and background-brightness tempera-
ture, and the values we used are shown in the table. We made the
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calculations with the use of the same range and antenna size as the meas-
urements. Several points can be made about the calculated data. One is that
the brightness temperature differences do not go up linearly with wire di-
ameter, as equation (3) would seem to imply since b and s were not con-
stant. This is simply because the sky and background temperature values
used in the model were varied with cylinder size according to the meas-
ured values (e.g., the 1/2-in, cylinder calculation uses the 1/2-in, wire sky-
brightness temperature data). The 11 /16- and 13/16-in, cylinders show about
the same signature despite their size difference because a warmer sky tem-
perature was used for the 13/16-in, cylinder calculation as shown in the
table. The 15/16-in, wire had an attenuating outer layer of polystyrene that
was not modeled, so no calculated results are given for it. In general, though,
the model results trend upward with increasing cylinder size as expected.

A comparison of the model with the calculated values, however, shows sig-
nificant differences. The measured wire data show no meaningful trends
with wire size, which can be explained by one difficulty with the measure-
ment technique. As figure 6 shows, the background brightness temperature
can vary appreciably between the time the scene is measured with the wire
and the time the scene is measured without it. If nothing changed during
that period of time, then the corresponding background and wire curves
should lie on top of one another except at angles where the wire is present.
Clearly this is not always the case. Figure 4 shows a good correspondence
between the wire and background data, but figure 5 does not. In effect, this
changing background adds about 5 K of noise to the AT measurement. This
means that because of the way the data were collected, they are not sensi-
tive enough to determine the effect of diameter on the MMW brightness
temperature of a wire. The data do show, however, the order of magnitude
of the signal that can be expected under the test parameters given here. This
conclusion is supported by the fact that the cylinder calculations are close
to the measured data.

Given the magnitude of the brightness-temperature differences shown by
table 2 and the fact that the data were taken at a 4-in range with a 3-in.
antenna, we can extrapolate the data to longer ranges and larger antennas.
These data provide a rough measure of what is possible with this type of
sensor at ranges of interest. Based on the data in this report, figure 7 shows
the temperature differences that would be expected versus range for a radi-
ometer with a 3-f t-diam antenna. After recalculating the fill factor, we see
that the measured values have simply been extrapolated out in range. The
curves follow the expected 1 /R dependence evident in equation (3). The
graph shows that, under the environmental conditions of the measurement,
the brightness-temperature change caused by a wire is on the order of 1 K
between 200 and 400 m. A radiometer would require a sensitivity of about
0.2 K to detect this change, which is realistic for a W-band radiometer that
has a 30-ms integration time.
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Figure 7. A calculation 8
of expected wire -.- 1/4 in.
contrast versus range. 7 ~' 5/16 in.
Curves are a - 1/2 in.
calculated .?5c- 13/16 in.

etaoainbased on c1/1inextaplaio 5a- 15/16 in.
data collected for each ý:
wire. Radiometer 75 4
antenna diameter was
taken to be 3ft. 3-

0
100 200 300 400 500

Range (in)

A significant challenge in the use of an MMW radiometer to detect wires is
clearly the variation and fluctuation of the background. The data show that
the background temperature changes by ±4 K at angles, near the horizon.
This problem is complicated by the fact that an airborne radiometer may be
viewing the horizon scene from a variety of angles, depending on its orien-
tation. The simplest way to solve this problem may be to have the sensor
continuously take data of the horizon during flight and store an averaged
template to which each new piece of data could be compared. Testing this
idea would require either sophisticated modeling of this scenario or flight
testing.

Before this effort is undertaken, however, one should thoroughly address
the issue of varying weather. The data in this report show qualitatively the
effect of a changing sky-brightness temperature on the wire-brightness temp-
erature. Larger wires sometimes showed lower than expected contrast be-
cause of a higher sky-brightness temperature. Overall, though, the sky temp-
eratures measured during this test were fairly low. It is not unusual to have
zenith sky temperatures of 125 to 175 K on humid summer days. This would
tend to reduce wire contrast. On the other hand, a humid summer day would
raise the background-brightness temperature and therefore tend to increase
wire contrast. The seasonal effects on contrast should certainly be consid-
ered more thoroughly to assess the range of contrasts that might be
encountered.

It should also be noted that no sophisticated image processing has been
applied to the data. Some algorithms such as maximum entropy and 2-mu
have demonstrated an ability to enhance contrast for some types of objects
in an image. Future work could involve trying these or similar algorithms
to determine if a contrast improvement can be made that might extend the
usable range of a radiometric sensor.
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5. Conclusions

We have presented the results of 94-GHz radiometric measurements of
powerline wires. We collected data on wires of a variety of diameters and
compared them to the background of each wire. The background data
showed a large variation in brightness temperature around the horizon,
but measurable differences were detected when a wire was present in the
scene. We made calculations to determine the MMW brightness tempera-
ture of cylinders under the same conditions as those of the wire experi-
ment. The results showed that such a method comes close to predicting the
magnitude of the actual wire data. We extrapolated the wire data to a longer
range scenario simulating a radiometer with a 3-ft antenna. The extrapo-
lated data show that wire-to-background contrast is marginally sufficient
for detection out to ranges of 400 m. The use of an 8-dB signal-to-noise ratio
criterion shows that reliable detection would occur out to about 200 m. We
can conclude that individual wires down to 1/4 in. in diameter can prob-
ably be detected reliably at ranges less than 200 m with a 94-GHz radio-
meter that uses a 3-ft antenna, with the condition that the MMW emission
of the horizon background can be characterized during flight. Beyond 200 m,
the results show that an image-enhancement algorithm or a larger diameter
antenna will probably be necessary to reliably detect most standard
powerline wires. The possibility exists, however, that groups of wires could
be detected reliably at greater ranges (>400 m) because of the increased pixel-
fill factor. Since wires are usually found in groups of two, three, or more,
this scenario should be considered in future measurements. Additional
measurements with the use of polarimetry could also be considered to ex-
plore possible improvements in wire-to-clutter ratio.
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